In silico prediction and in vivo testing of promoters targeting GABAergic inhibitory neurons

针对 GABA 能抑制神经元的启动子的计算机预测和体内测试

阅读:5
作者:Yosuke Niibori, Robert Duba-Kiss, Joseph T Bruder, Jared B Smith, David R Hampson

Abstract

Impairment of GABAergic inhibitory neuronal function is linked to epilepsy and other neurological and psychiatric disorders. Recombinant adeno-associated virus (rAAV)-based gene therapy targeting GABAergic neurons is a promising treatment for GABA-associated disorders. However, there is a need to develop rAAV-compatible gene-regulatory elements capable of selectively driving expression in GABAergic neurons throughout the brain. Here, we designed several novel GABAergic gene promoters. In silico analyses, including evolutionarily conserved DNA sequence alignments and transcription factor binding site searches among GABAergic neuronal genes, were carried out to reveal novel sequences for use as rAAV-compatible promoters. rAAVs (serotype 9) were injected into the CSF of neonatal mice and into the brain parenchyma of adult mice to assess promoter specificity. In mice injected neonatally, transgene expression was detected in multiple brain regions with very high neuronal specificity and moderate-to-high GABAergic neuronal selectivity. The GABA promoters differed greatly in their levels of expression and, in some brain regions, showed strikingly different patterns of GABAergic neuron transduction. This study is the first report of rAAV vectors that are functional in multiple brain regions using promoters designed by in silico analyses from multiple GABAergic genes. These novel GABA-targeting vectors may be useful tools to advance gene therapy for GABA-associated disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。