Bardoxolone Methyl Ameliorates Myocardial Ischemia/Reperfusion Injury by Activating the Nrf2/HO-1 Signaling Pathway

巴多索隆甲基通过激活 Nrf2/HO-1 信号通路改善心肌缺血/再灌注损伤

阅读:7
作者:Anwu Huang, Zhaolin Wang, Hua Tang, Zhuyin Jia, Xiaojun Ji, Xuehua Yang, Wenbing Jiang

Background

Myocardial ischemia/reperfusion (I/R) injury is a severe heart problem resulting from restoring coronary blood flow to the myocardium after ischemia. This study is aimed at ascertaining the therapeutic efficiency and action mechanism of bardoxolone methyl (BARD) in myocardial I/R injury.

Conclusion

BARD ameliorates myocardial I/R injury by inhibiting oxidative stress and cardiomyocyte apoptosis via activating the Nrf2/HO-1 pathway.

Methods

In male rats, myocardial ischemia was performed for 0.5 h, and then, reperfusion lasted for 24 h. BARD was administrated in the treatment group. The animal's cardiac function was measured. Myocardial I/R injury serum markers were detected via ELISA. The 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to estimate the infarction. H&E staining was used to evaluate the cardiomyocyte damage, and Masson trichrome staining was used to observe the proliferation of collagen fiber. The apoptotic level was assessed via the caspase-3 immunochemistry and TUNEL staining. Oxidative stress was measured through malondialdehyde, 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, and inducible nitric oxide synthases. The alteration of the Nrf2/HO-1 pathway was confirmed via western blot, immunochemistry, and PCR analysis.

Results

The protective effect of BARD on myocardial I/R injury was observed. In detail, BARD decreased cardiac injuries, reduced cardiomyocyte apoptosis, and inhibited oxidative stress. For mechanisms, BARD treatment significantly activates the Nrf2/HO-1 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。