DMSO impairs the transcriptional program for maternal-to-embryonic transition by altering histone acetylation

DMSO 通过改变组蛋白乙酰化来损害母体到胚胎的转变转录程序

阅读:5
作者:Min-Hee Kang, Seong-Yeob You, Kwonho Hong, Jin-Hoi Kim

Abstract

Dimethyl sulfoxide (DMSO) is widely used in basic and clinical research, yet its toxicity and biocompatibility properties remain elusive. Here, we report that exposure of mouse zygotes to 2% DMSO perturbed the transcriptional program, critical for maternal-to-embryonic transition and provoked developmental arrest at the 2- or 4-cell stage. Mechanistically, DMSO decreased total protein acetylation in the 2-cell embryos but increased histone H3 and H4 acetylations, as well as p53, H3K9, and H3K27 acetylations. The epigenetic changes led to an altered expression pattern of 16.26% of total valid genes in DMSO-exposed embryos. Among the affected genes, expression of maternal and minor zygotic gene activation (ZGA) genes was enhanced, whereas the ubiquitin-proteasome system, major ZGA transcripts, embryonic gene activation, the cell cycle, and ribosomal biogenesis genes were suppressed. Therefore, we conclude that DMSO causes developmental arrest by disrupting maternal-to-embryonic transition; hence, caution should be exerted when using it as a solvent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。