Gcn5-Mediated Histone Acetylation Governs Nucleosome Dynamics in Spermiogenesis

Gcn5介导的组蛋白乙酰化调控精子发生过程中的核小体动力学

阅读:1
作者:Lacey J Luense ,Greg Donahue ,Enrique Lin-Shiao ,Richard Rangel ,Angela H Weller ,Marisa S Bartolomei ,Shelley L Berger

Abstract

During mammalian spermatogenesis, germ cell chromatin undergoes dramatic histone acetylation-mediated reorganization, whereby 90%-99% of histones are evicted. Given the potential role of retained histones in fertility and embryonic development, the genomic location of retained nucleosomes is of great interest. However, the ultimate position and mechanisms underlying nucleosome eviction or retention are poorly understood, including several studies utilizing micrococcal-nuclease sequencing (MNase-seq) methodologies reporting remarkably dissimilar locations. We utilized assay for transposase accessible chromatin sequencing (ATAC-seq) in mouse sperm and found nucleosome enrichment at promoters but also retention at inter- and intragenic regions and repetitive elements. We further generated germ-cell-specific, conditional knockout mice for the key histone acetyltransferase Gcn5, which resulted in abnormal chromatin dynamics leading to increased sperm histone retention and severe reproductive phenotypes. Our findings demonstrate that Gcn5-mediated histone acetylation promotes chromatin accessibility and nucleosome eviction in spermiogenesis and that loss of histone acetylation leads to defects that disrupt male fertility and potentially early embryogenesis. Keywords: Gcn5; Kat2a; chromatin; epigenetics; infertility; male germ cells; nucleosome retention; sperm; spermatogenesis; spermiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。