Gene network analysis identifies a central post-transcriptional regulator of cellular stress survival

基因网络分析确定了细胞应激生存的中心转录后调节因子

阅读:10
作者:Matthew Tien, Aretha Fiebig, Sean Crosson

Abstract

Cells adapt to shifts in their environment by remodeling transcription. Measuring changes in transcription at the genome scale is now routine, but defining the functional significance of individual genes within large gene expression datasets remains a major challenge. We applied a network-based algorithm to interrogate publicly available gene expression data to predict genes that serve major functional roles in Caulobacter crescentus stress survival. This approach identified GsrN, a conserved small RNA that is directly activated by the general stress sigma factor, σT, and functions as a potent post-transcriptional regulator of survival across distinct conditions including osmotic and oxidative stress. Under hydrogen peroxide stress, GsrN protects cells by base pairing with the leader of katG mRNA and activating expression of KatG catalase/peroxidase protein. We conclude that GsrN convenes a post-transcriptional layer of gene expression that serves a central functional role in Caulobacter stress physiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。