Blocking β₁/β₂-Adrenergic Signaling Reduces Dietary Fat Absorption by Suppressing Expression of Pancreatic Lipase in High Fat-Fed Mice

阻断 β₁/β₂ 肾上腺素能信号传导可通过抑制高脂饮食小鼠的胰腺脂肪酶表达来减少膳食脂肪吸收

阅读:5
作者:Kyunghwa Baek, Danbi Park, Hyo Rin Hwang, Seong-Gon Kim, Heesu Lee, Jeong-Hwa Baek

Abstract

We investigated whether β-adrenergic antagonists attenuates dietary fat absorption through the regulation of pancreatic lipase (PNLIP) expression in pancreatic acinar cells in the context of high fat diet feeding. Male six-week-old C57BL/6 mice were assigned into an ad libitum fed control diet (CON) and a high fat diet (HIGH). Within each diet group, subgroups of mice were treated with vehicle (VEH) or propranolol, a β-adrenergic antagonist (BB). Over 12 weeks, body weight gain observed in HIGHVEH was mitigated in HIGHBB (+103% vs. +72%). Increase in fecal fat amount observed in HIGHVEH was further increased in HIGHBB. Increase in PNLIP expressions observed in HIGHVEH pancreatic tissues was abolished in HIGHBB. PNLIP expression in mouse primary pancreatic acinar cells and 266-6 cell lines increased with isoproterenol treatment, which was blocked by propranolol. Isoproterenol increased PNLIP expression in a cAMP/protein kinase A/ cyclic AMP response element binding protein (CREB)-dependent manner. CREB directly bound to the CRE on the mouse PNLIP promoter and transactivated PNLIP expression. These results suggest that sympathetic activation increases dietary fat absorption through the upregulation of PNLIP expression and that a β-adrenergic antagonist attenuates obesity development partly through the downregulation of PNLIP expression and inhibition of dietary fat absorption in the context of high fat diet feeding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。