Dietary nitrate attenuates high-fat diet-induced obesity via mechanisms involving higher adipocyte respiration and alterations in inflammatory status

膳食硝酸盐通过提高脂肪细胞呼吸作用和改变炎症状态的机制减轻高脂饮食引起的肥胖

阅读:6
作者:M Peleli, D M S Ferreira, L Tarnawski, S McCann Haworth, L Xuechen, Z Zhuge, P T Newton, J Massart, A S Chagin, P S Olofsson, J L Ruas, E Weitzberg, J O Lundberg, M Carlström

Abstract

Emerging evidence indicates that dietary nitrate can reverse several features of the metabolic syndrome, but the underlying molecular mechanisms still remain elusive. The aim of the present study was to explore mechanisms involved in the effects of dietary nitrate on the metabolic dysfunctions induced by high-fat diet (HFD) in mice. Four weeks old C57BL/6 male mice, exposed to HFD for ten weeks, were characterised by increased body weight, fat content, increased fasting glucose and impaired glucose clearance. All these metabolic abnormalities were significantly attenuated by dietary nitrate. Mechanistically, subcutaneous primary mouse adipocytes exposed to palmitate (PA) and treated with nitrite exhibited higher mitochondrial respiration, increased protein expression of total mitochondrial complexes and elevated gene expression of the thermogenesis gene UCP-1, as well as of the creatine transporter SLC6A8. Finally, dietary nitrate increased the expression of anti-inflammatory markers in visceral fat, plasma and bone marrow-derived macrophages (Arginase-1, Egr-2, IL-10), which was associated with reduction of NADPH oxidase-derived superoxide production in macrophages. In conclusion, dietary nitrate may have therapeutic utility against obesity and associated metabolic complications possibly by increasing adipocyte mitochondrial respiration and by dampening inflammation and oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。