Slit-miR-218-Robo axis regulates retinal neovascularization

Slit-miR-218-Robo 轴调控视网膜新生血管

阅读:4
作者:Yichun Kong, Bei Sun, Quanhong Han, Shuang Han, Yuchuan Wang, Ying Chen

Abstract

miR-218 is an important intronic microRNA (miRNA or miR) which is known to regulate angiogenesis in tumors. The present study aimed to investigate the effects of miR-218, as well as its host genes, Slit2 and Slit3, on oxygen-induced retinal neovascularization (RNV) and to explore the associated mechanisms of action. For this purpose, a mouse model of oxygen-induced retinopathy (OIR) was established. The expression levels of miR-218-1 and miR-218-2, as well as those of their host genes, Slit2 and Slit3, were determined by RT-qPCR. Fluorescein angiography was performed on the retinas of the mice with OIR, and RNV was quantified by H&E staining in order to evaluate the effect of pCDH-CMV-miR-218 intravitreal injection on RNV in the mouse model of OIR. Roundabout, axon guidance receptor, homolog 1 (Robo1) expression was detected in mouse retinal vascular endothelial cells expressing high or low levels of miR-218 and in retinal tissues from mice with OIR by western blot analysis. Cell migration was evaluated by a scratch wound assay. We noted that in the mice with OIR, the expression level of miR-218 was significantly downregulated. We also noted that Robo1 expression was suppressed by miR-218. Furthermore, in the mice with OIR, the expression level of miR-218 was significantly downregulated, and that of miR-218-1 and its host gene, Slit2, was concomitantly downregulated as well. The restoration of miR-218 inhibited retinal angiogenesis by targeting Robo1. Taken together, our findings suggest that the Slit2-miR-218-Robo1 axis contributes to the inhibition of retinal angiogenesis and that miR-218 may be a new therapeutic target for preventing RNV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。