Toll-like receptors (TLR2 and TLR4) antagonist mitigates the onset of cerebral small vessel disease through PI3K/Akt/GSK3β pathway in stroke-prone renovascular hypertensive rats

Toll 样受体(TLR2 和 TLR4)拮抗剂通过 PI3K/Akt/GSK3β 通路减轻易中风的肾血管性高血压大鼠脑小血管病的发生

阅读:8
作者:Nan Wang, Wanshu Guo, Tongtong Liu, Xiaohong Chen, Muhui Lin

Abstract

To examine the effect and mechanism of Toll-Like Receptors (TLR2, TLR4) antagonist in CSVD. The rat model of stroke-induced renovascular hypertension (RHRSP) was constructed. TLR2 and TLR4 antagonist was administrated by Intracranial injection. Morris water maze was used to observe the behavioral changes of rat models. HE staining, TUNEL staining and Evens Blue staining were performed to evaluate the permeability of the blood-brain barrier (BBB) and examine the CSVD occurrence and neuronal apoptosis. The inflammation and oxidative stress factors were detected by ELISA. Hypoxia-glucose-deficiency (OGD) ischemia model was constructed in cultured neurons. Western blot and ELISA were used to examine the related protein expression in TLR2/TLR4 signaling pathway and PI3K/Akt/GSK3β signaling pathway. The RHRSP rat model was successfully constructed, and the blood well and BBB permeability were altered. The RHRSP rats showed cogitative impairment and excessive immune response. After TLR2/TLR4 antagonist administration, the behavior of model rats were improved, cerebral white matter injury was reduced, and the expression of several key inflammatory factors including TLR4, TLR2, Myd88 and NF-kB were decreased, as well as the ICAM-1, VCAM-1, inflammation and oxidative stress factors. In vitro experiments showed that TLR4 and TLR2 antagonist increased the cell viability, inhibited the apoptosis, and decreased p-Akt and p-GSK3β expression. Moreover, the PI3K inhibitors resulted in decreased anti-apoptotic and anti-inflammatory effects of TLR4 and TLR2 antagonist. These results suggested that TLR4 and TLR2 antagonist achieved protective effect on the RHRSP through the PI3K/Akt/GSK3β pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。