MicroRNA-16 suppresses the activation of inflammatory macrophages in atherosclerosis by targeting PDCD4

MicroRNA-16 通过靶向 PDCD4 抑制动脉粥样硬化中炎症巨噬细胞的活化

阅读:6
作者:Xue Liang, Zhao Xu, Meng Yuan, Yue Zhang, Bo Zhao, Junqian Wang, Aixue Zhang, Guangping Li

Abstract

Programmed cell death 4 (PDCD4) is involved in a number of bioprocesses, such as apoptosis and inflammation. However, its regulatory mechanisms in atherosclerosis remain unclear. In this study, we investigated the role and mechanisms of action of PDCD4 in high-fat diet-induced atherosclerosis in mice and in foam cells (characteristic pathological cells in atherosclerotic lesions) derived from ox-LDL-stimulated macrophages. MicroRNA (miR)-16 was predicted to bind PDCD4 by bioinformatics analysis. In the mice with atherosclerosis and in the foam cells, PDCD4 protein expression (but not the mRNA expression) was enhanced, while that of miR‑16 was reduced. Transfection with miR‑16 mimic decreased the activity of a luciferase reporter containing the 3' untranslated region (3'UTR) of PDCD4 in the macrophage-derived foam cells. Conversely, treatment with miR‑16 inhibitor enhanced the luciferase activity. However, by introducing mutations in the predicted binding site located in the 3'UTR of PDCD4, the miR‑16 mimic and inhibitor were unable to alter the level of PDCD4, suggesting that miR‑16 is a direct negative regulator of PDCD4 in atherosclerosis. Furthermore, transfection wtih miR‑16 mimic and siRNA targeting PDCD4 suppressed the secretion and mRNA expression of pro-inflammatory factors, such as interleukin (IL)-6 and tumor necrosis factor-α (TNF‑α), whereas it enhanced the secretion and mRNA expression of the anti-inflammatory factor, IL-10. Treatment with miR‑16 inhibitor exerted the opposite effects. In addition, the phosphorylation of p38 and extracellular signal-regulated kinase (ERK), and nuclear factor-κB (NF-κB) expression were altered by miR‑16. In conclusion, our data demonstrate that the targeting of PDCD4 by miR‑16 may suppress the activation of inflammatory macrophages though mitogen-activated protein kinase (MAPK) and NF-κB signaling in atherosclerosis; thus, PDCD4 may prove to be a potential therapeutic target in the treatment of atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。