Effect and mechanism of fuzhisan and donepezil on the sirtuin 1 pathway and amyloid precursor protein metabolism in PC12 cells

复智散与多奈哌齐对PC12细胞sirtuin 1通路及淀粉样蛋白前体代谢的影响及机制

阅读:7
作者:Peng Guo, Desheng Wang, Xiaomin Wang, Honglin Feng, Ying Tang, Ruihong Sun, Yan Zheng, Lin Dong, Jiaying Zhao, Xin Zhang, Shuyu Wang, Hongxu Sun

Abstract

The present study aimed to determine the effect and mechanism of fuzhisan (FZS) and donepezil on the SIRT1 signaling pathway and the metabolism of the amyloid precursor protein (APP) in PC12 cells. An experimental cell model of PC12 cells with Aβ25‑35‑induced neurotoxicity was established and cell proliferation was determined by the MTT assay following treatment with donepezil and FZS. In addition, cell apoptosis was determined using DAPI staining and light microscopy. Furthermore, western blot analysis and ELISA were utilized to evaluate the expression levels of associated APP, Aβ40, Aβ42, sAPPα, sAPPβ, ADAM10, sirtuin 1 (SIRT1) and forkhead box O (FoxO) protein. The results indicated that the cell model was successfully established and FZS protected the PC12 cells from the neurotoxic effects of Aβ25‑35, in a similar effect to donepezil, in a dose‑dependent manner. The expression of APP remained at the same level during the experimental period. The levels of Aβ40, Aβ42 and sAPPβ were downregulated, where as sAPPα, ADAM10, SIRT1 and FoxO expression levels were upregulated. In conclusion, FZS treatment attenuated the Aβ25‑35‑induced neurotoxicity in vitro. The neuroprotective mechanism of FZS was determined, including the induction of ADAM10 and SIRT1‑FoxO pathway, which participated in the process of neuroprotection. The present study identified the neuroprotective function of FZS, which may protect against Aβ‑induced toxicity. Therefore, FZS may be used clinically as a beneficial therapeutic drug for the development or progression of Alzheimer's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。