Dynamin-1-Like Protein Inhibition Drives Megamitochondria Formation as an Adaptive Response in Alcohol-Induced Hepatotoxicity

类动力蛋白 1 的抑制可促进巨线粒体的形成,这是酒精引起的肝毒性的一种适应性反应

阅读:7
作者:Elena Palma, Xiaowen Ma, Antonio Riva, Valeria Iansante, Anil Dhawan, Shaogui Wang, Hong-Min Ni, Hiromi Sesaki, Roger Williams, Wen-Xing Ding, Shilpa Chokshi

Abstract

Despite the growing global burden of alcoholic liver diseases, therapeutic options are limited, and novel targets are urgently needed. Accumulating evidence suggests that mitochondria adapt in response to ethanol and formation of megamitochondria in the livers of patients is recognized as a hallmark of alcoholic liver diseases. The processes involved in ethanol-induced hepatic mitochondrial changes, the impact on mitochondria-shaping proteins, and the significance of megamitochondria formation remain unknown. In this study, we investigated the mitochondrial and cellular response to alcohol in hepatoma cell line VL-17A. The mitochondrial architecture rapidly changed after 3 or 14 days of ethanol exposure with double-pronged presentation of hyperfragmentation and megamitochondria, and cell growth was inhibited. Dynamin-1-like protein (Drp1) was identified as the main mediator driving these mitochondrial alterations, and its genetic inactivation was determined to foster megamitochondria development, preserving the capacity of the cells to grow despite alcohol toxicity. The role of Drp1 in mediating megamitochondria formation in mice with liver-specific inactivation of Drp1 was further confirmed. Finally, when these mice were fed with ethanol, the presentation of hepatic megamitochondria was exacerbated compared with wild type fed with the same diet. Ethanol-induced toxicity was also reduced. Our study demonstrates that megamitochondria formation is mediated by Drp1, and this phenomenon is a beneficial adaptive response during alcohol-induced hepatotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。