Preventing muscle wasting: pro-insulin C-peptide prevents loss in muscle mass in streptozotocin-diabetic rats

预防肌肉萎缩:促胰岛素 C 肽可防止链脲佐菌素糖尿病大鼠的肌肉质量损失

阅读:5
作者:Samantha Maurotti, Roberta Pujia, Angelo Galluccio, Saverio Nucera, Vincenzo Musolino, Rosario Mare, Miriam Frosina, Francesca Rita Noto, Vincenzo Mollace, Stefano Romeo, Arturo Pujia, Tiziana Montalcini

Background

C-peptide therapy exerts several positive actions on nerves, vasculature, smooth muscle relaxation, kidney function and bone. To date, the role of C-peptide in preventing type 1 diabetes-related muscle atrophy has not been investigated. Our

Conclusions

C-peptide administration in rats could protect skeletal muscle mass from atrophy induced by type 1 diabetes mellitus. Our findings could suggest that targeting the ubiquitin-proteasome system, Ampk and muscle-specific E3 ubiquitin ligases such as Atrogin-1 and Traf6 may be an effective strategy for molecular and clinical intervention in the muscle wasting pathological process in T1DM.

Methods

Twenty-three male Wistar rats were randomly divided into three groups: normal control group, diabetic group and diabetic group plus C-peptide. Diabetes was induced by streptozotocin injection, and C-peptide was administered subcutaneously for 6 weeks. The blood samples were obtained at baseline, before streptozotocin injection and at the end of the study to assess C-peptide, ubiquitin and other laboratory parameters. We also tested the ability of C-peptide to regulate the skeletal muscle mass, the ubiquitin-proteasome system, the autophagy pathway as well as to improve muscle quality.

Results

C-peptide administration reversed hyperglycaemia (P = 0.02) and hypertriglyceridaemia (P = 0.01) in diabetic plus C-peptide rats compared with diabetic control rats. The diabetic-control animals displayed a lower weight of the muscles in the lower limb considered individually than the control rats and the diabetic plus C-peptide rats (P = 0.03; P = 0.03; P = 0.04; P = 0.004, respectively). The diabetic-control rats presented a significantly higher serum concentration of ubiquitin compared with the diabetic plus C-peptide and the control animals (P = 0.02 and P = 0.01). In muscles of the lower limb, the pAmpk expression was higher in the diabetic plus C-peptide than the diabetic-control rats (in the gastrocnemius, P = 0.002; in the tibialis anterior P = 0.005). The protein expression of Atrogin-1 in gastrocnemius and tibialis was lower in the diabetic plus C-peptide than in diabetic-control rats (P = 0.02, P = 0.03). After 42 days, the cross-sectional area in the gastrocnemius of the diabetic plus C-peptide group had been reduced by 6.6% while the diabetic-control rats had a 39.5% reduction compared with the control animals (P = 0.02). The cross-sectional area of the tibialis and the extensor digitorum longus muscles was reduced, in the diabetic plus C-peptide rats, by 10% and 11%, respectively, while the diabetic-control group had a reduction of 65% and 45% compared with the control animals (both P < 0.0001). Similar results were obtained for the minimum Feret's diameter and perimeter. Conclusions: C-peptide administration in rats could protect skeletal muscle mass from atrophy induced by type 1 diabetes mellitus. Our findings could suggest that targeting the ubiquitin-proteasome system, Ampk and muscle-specific E3 ubiquitin ligases such as Atrogin-1 and Traf6 may be an effective strategy for molecular and clinical intervention in the muscle wasting pathological process in T1DM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。