12-Lipoxygenase-knockout mice are resistant to inflammatory effects of obesity induced by Western diet

12-脂氧合酶基因敲除小鼠对西方饮食引起的肥胖炎症作用具有抵抗力

阅读:5
作者:Craig S Nunemaker, Meng Chen, Hong Pei, Sarah D Kimble, Susanna R Keller, Jeffrey D Carter, Zandong Yang, Kellie M Smith, Runpei Wu, Melissa H Bevard, James C Garmey, Jerry L Nadler

Abstract

Inflammation is a key pathological process in the progression of atherosclerosis and type 2 diabetes. 12/15-lipoxygenase (12-LO), an enzyme involved in fatty acid metabolism, may contribute to inflammatory damage triggered by stressors such as obesity and insulin resistance. We hypothesized that mice lacking 12-LO are protected against inflammatory-mediated damage associated with a "western" diet. To test this hypothesis, age-matched male 12-LO knockout (12-LOKO) and wild-type C57BL/6 (B6) mice were fed either a standard chow or western diet and assessed for several inflammatory markers. Western-fed B6 mice showed expected reductions in glucose and insulin tolerance compared with chow-fed mice. In contrast, western-fed 12-LOKO mice maintained glucose and insulin tolerance similar to chow-fed mice. Circulating proinflammatory cytokines, tumor necrosis factor-alpha and interleukin-6, were increased in western B6 mice but not 12-LOKO mice, whereas the reported protective adipokine, adiponectin, was decreased only in western B6 mice. 12-LO activity was significantly elevated by western diet in islets from B6 mice. Islets from 12-LOKO mice did not show western-diet-induced islet hyperplasia or increases in caspase-3 apoptotic staining observed in western-fed B6 mice. Islets from 12-LOKO mice were also protected from reduced glucose-stimulated insulin secretion observed in islets from western-fed B6 mice. In visceral fat, macrophage numbers and monocyte chemoattractant protein-1 expression were elevated in western B6 mice but not 12-LOKO mice. These data suggest that 12-LO activation plays a role in western-diet-induced damage in visceral fat and islets. Inhibiting 12-LO may provide a new therapeutic approach to prevent inflammation-mediated metabolic consequences of excess fat intake.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。