Apoptosis in Postmortal Tissues of Goat Spinal Cords and Survival of Resident Neural Progenitors

山羊脊髓死后组织中的细胞凋亡和驻留神经祖细胞的存活

阅读:7
作者:Andrey Mikhailov, Yoshiyuki Sankai

Abstract

Growing demand for therapeutic tissue repair recurrently focusses scientists' attention on critical assessment of postmortal collection of live cells, especially stem cells. Our study aimed to assess the survival of neuronal progenitors in postmortal spinal cord and their differentiation potential. Postmortal samples of spinal cords were obtained from human-sized animals (goats) at 6, 12, 24, 36, and 54 h after slaughter. Samples were studied by immunohistology, differentiation assay, Western blot and flow cytometry for the presence and location of GD2-positive neural progenitors and their susceptibility to cell death. TUNEL staining of the goat spinal cord samples over 6-54 h postmortem revealed no difference in the number of positive cells per cross-section. Many TUNEL-positive cells were located in the gray commissure around the central canal of the spinal cord; no increase in TUNEL-positive cells was recorded in either posterior or anterior horns of the gray matter where many GD2-positive neural progenitors can be found. The active caspase 3 amount as measured by Western blot at the same intervals was moderately increasing over time. Neuronal cells were enriched by magnetic separation with antibodies against CD24; among them, the GD2-positive neural progenitor subpopulation did not overlap with apoptotic cells having high pan-caspase activity. Apoptotic cell death events are relatively rare in postmortal spinal cords and are not increased in areas of the neural progenitor cell's location, within measured postmortal intervals, or among the CD24/GD2-positive cells. Data from our study suggest postmortal spinal cords as a valuable source for harvesting highly viable allogenic neural progenitor cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。