Lead-Induced ERK Activation Is Mediated by GluR2 Non-containing AMPA Receptor in Cortical Neurons

皮质神经元中不含 GluR2 的 AMPA 受体介导铅诱导的 ERK 激活

阅读:4
作者:Keishi Ishida, Yaichiro Kotake, Seigo Sanoh, Shigeru Ohta

Abstract

Lead is a persistent environmental pollutant and exposure to high environmental levels causes various deleterious toxicities, especially to the central nervous system (CNS). The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor that is devoid of the glutamate receptor 2 (GluR2) subunit is Ca2+-permeable, which increases the neuronal vulnerability to excitotoxicity. We have previously reported that long-term exposure of rat cortical neurons to lead acetate induces decrease of GluR2 expression. However, it is not clarified whether lead-induced GluR2 decrease is involved in neurotoxicity. Therefore, we investigated the contribution of GluR2 non-containing AMPA receptor to lead-induced neurotoxic events. Although the expression of four AMPA receptor subunits (GluR1, GluR2, GluR3, and GluR4) was decreased by lead exposure, the decrease in GluR2 expression was remarkable among four subunits. Lead-induced neuronal cell death was rescued by three glutamate receptor antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, a non-selective AMPA receptor blocker), MK-801 (N-methyl-D-aspartate (NMDA) receptor blocker), and 1-naphthyl acetyl spermine (NAS, a specific Ca2+-permeable AMPA receptor blocker). Lead exposure activated extracellular signal-regulated protein kinase (ERK) 1/2, which was significantly ameliorated by CNQX. In addition, lead exposure activated p38 mitogen-activated protein kinase (MAPK p38), and protein kinase C (PKC), which was partially ameliorated by CNQX. Our findings indicate that Ca2+-permeable AMPA receptors resulting from GluR2 decrease may be involved in lead-induced neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。