Studies on the Thermal Decomposition Course of Nitrogen-Rich Heterocyclic Esters as Potential Drug Candidates and Evaluation of Their Thermal Stability and Properties

富氮杂环酯类药物热分解过程研究及热稳定性和性能评价

阅读:4
作者:Marta Worzakowska, Krzysztof Sztanke, Małgorzata Sztanke

Abstract

Drug candidates must undergo thermal evaluation as early as possible in the preclinical phase of drug development because undesirable changes in their structure and physicochemical properties may result in decreased pharmacological activity or enhanced toxicity. Hence, the detailed evaluation of nitrogen-rich heterocyclic esters as potential drug candidates, i.e., imidazolidinoannelated triazinylformic acid ethyl esters 1-3 (where R1 = 4-CH3 or 4-OCH3 or 4-Cl, and R2 = -COOC2H5) and imidazolidinoannelated triazinylacetic acid methyl esters 4-6 (where R1 = 4-CH3 or 4-OCH3 or 4-Cl, and R2 = -CH2COOCH3)-in terms of their melting points, melting enthalpy values, thermal stabilities, pyrolysis, and oxidative decomposition course-has been carried out, using the simultaneous thermal analysis methods (TG/DTG/DSC) coupled with spectroscopic techniques (FTIR and QMS). It was found that the melting process (documented as one sharp peak related to the solid-liquid phase transition) of the investigated esters proceeded without their thermal decomposition. It was confirmed that the melting points of the tested compounds increased in relation to R1 and R2 as follows: 2 (R1 = 4-OCH3; R2 = -COOC2H5) < 6 (R1 = 4-Cl; R2 = -CH2COOCH3) < 5 (R1 = 4-OCH3; R2 = -CH2COOCH3) < 3 (R1 = 4-Cl; R2 = -COOC2H5) < 1 (R1 = 4-CH3; R2 = -COOC2H5) < 4 (R1 = 4-CH3; R2 = -CH2COOCH3). All polynitrogenated heterocyclic esters proved to be thermally stable up to 250 °C in inert and oxidising conditions, although 1-3 were characterised by higher thermal stability compared to 4-6. The results confirmed that both the pyrolysis and the oxidative decomposition of heterocyclic ethyl formates/methyl acetates with para-substitutions at the phenyl moiety proceed according to the radical mechanism. In inert conditions, the pyrolysis process of the studied molecules occurred with the homolytic breaking of the C-C, C-N, and C-O bonds. This led to the emission of alcohol (ethanol in the case of 1-3 or methanol in the case of 4-6), NH3, HCN, HNCO, aldehydes, CO2, CH4, HCl, aromatics, and H2O. In turn, in the presence of air, cleavage of the C-C, C-N, and C-O bonds connected with some oxidation and combustion processes took place. This led to the emission of the corresponding alcohol depending on the analysed class of heterocyclic esters, NH3, HCN, HNCO, aldehydes, N2, NO/NO2, CO, CO2, HCl, aromatics, and H2O. Additionally, after some biological tests, it was proven that all nitrogen-rich heterocyclic esters-as potential drug candidates-are safe for erythrocytes, and some of them are able to protect red blood cells from oxidative stress-induced damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。