The mechanisms of mitochondrial dysfunction and glucose intake decrease induced by Microcystin-LR in ovarian granulosa cells

微囊藻毒素-LR 引起卵巢颗粒细胞线粒体功能障碍及葡萄糖摄入减少的机制

阅读:4
作者:Jinling Zhu, Kunyang Liu, Ligang Pei, Xinyue Hu, Yuchen Cai, Jie Ding, Dongmei Li, Xiaodong Han, Jiang Wu

Abstract

Microcystin-LR (MC-LR) is a cyclic heptapeptide; it is an intracellular toxin released by cyanobacteria that exhibits strong reproductive toxicity. Previous studies have demonstrated that MC-LR induces oxidative stress in granulosa cells by damaging the mitochondria, which eventually leads to follicle atresia and female subfertility. In the present study, granulosa cells were exposed to 0, 0.01, 0.1 and 1 μM MC-LR. After 24 h, we observed changes in mitochondrial cristae morphology and dynamics by analyzing the results of mitochondrial transmission electron microscopy and detecting the expression of DRP1. We also evaluated glucose intake using biochemical assays and expression of glucose transport related proteins. MC-LR exposure resulted in mitochondrial fragmentation and glucose intake decrease in granulosa cells, as shown by increasing mitochondrial fission via dynamin-related protein 1 (DRP1) upregulation and decreasing glucose transporter 1 and 4 (GLUT1 and GLUT4). Furthermore, the expression levels of forkhead box protein M1 (FOXM1) significantly increased due to the overproduction of reactive oxygen species (ROS) after MC-LR exposure. Our results proved that MC-LR exposure causes mitochondrial fragmentation and glucose intake decrease in granulosa cells, which provides new insights to study the molecular mechanism of female reproductive toxicity induced by MC-LR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。