Regulation of Vascular Smooth Muscle Cell Dysfunction Under Diabetic Conditions by miR-504

miR-504 对糖尿病血管平滑肌细胞功能障碍的调控

阅读:5
作者:Marpadga A Reddy, Sadhan Das, Chen Zhuo, Wen Jin, Mei Wang, Linda Lanting, Rama Natarajan

Approach and results

High throughput small RNA-sequencing identified 135 differentially expressed miRNAs in VSMC from type 2 diabetic db/db mice (db/dbVSMC) versus nondiabetic db/+ mice. Several of these miRNAs were known to regulate VSMC functions. We further focused on miR-504, because it was highly upregulated in db/dbVSMC, and its function in VSMC is unknown. miR-504 and its host gene Fgf13 were significantly increased in db/dbVSMC and in aortas from db/db mice. Bioinformatics analysis predicted that miR-504 targets including signaling adaptor Grb10 and transcription factor Egr2 could regulate growth factor signaling. We experimentally validated Grb10 and Egr2 as novel targets of miR-504. Overexpression of miR-504 in VSMC inhibited contractile genes and enhanced extracellular signal-regulated kinase 1/2 activation, proliferation, and migration. These effects were blocked by miR-504 inhibitors. Grb10 knockdown mimicked miR-504 functions and increased inflammatory genes. Egr2 knockdown-inhibited anti-inflammatory Socs1 and increased proinflammatory genes. Furthermore, high glucose and palmitic acid upregulated miR-504 and inflammatory genes, but downregulated Grb10. Conclusions: Diabetes mellitus misregulates several miRNAs including miR-504 that can promote VSMC dysfunction. Because changes in many of these miRNAs are sustained in diabetic VSMC even after in vitro culture, they may be involved in metabolic memory of vascular complications. Targeting such mechanisms could offer novel therapeutic strategies for diabetic complications.

Conclusions

Diabetes mellitus misregulates several miRNAs including miR-504 that can promote VSMC dysfunction. Because changes in many of these miRNAs are sustained in diabetic VSMC even after in vitro culture, they may be involved in metabolic memory of vascular complications. Targeting such mechanisms could offer novel therapeutic strategies for diabetic complications.

Objective

Diabetes mellitus accelerates proatherogenic and proinflammatory phenotype of vascular smooth muscle cell (VSMC) associated with vascular complications. Evidence shows that microRNAs (miRNAs) play key roles in VSMC functions, but their role under diabetic conditions is unclear. We profiled miRNAs in VSMC from diabetic mice and examined their role in VSMC dysfunction. Approach and

Results

High throughput small RNA-sequencing identified 135 differentially expressed miRNAs in VSMC from type 2 diabetic db/db mice (db/dbVSMC) versus nondiabetic db/+ mice. Several of these miRNAs were known to regulate VSMC functions. We further focused on miR-504, because it was highly upregulated in db/dbVSMC, and its function in VSMC is unknown. miR-504 and its host gene Fgf13 were significantly increased in db/dbVSMC and in aortas from db/db mice. Bioinformatics analysis predicted that miR-504 targets including signaling adaptor Grb10 and transcription factor Egr2 could regulate growth factor signaling. We experimentally validated Grb10 and Egr2 as novel targets of miR-504. Overexpression of miR-504 in VSMC inhibited contractile genes and enhanced extracellular signal-regulated kinase 1/2 activation, proliferation, and migration. These effects were blocked by miR-504 inhibitors. Grb10 knockdown mimicked miR-504 functions and increased inflammatory genes. Egr2 knockdown-inhibited anti-inflammatory Socs1 and increased proinflammatory genes. Furthermore, high glucose and palmitic acid upregulated miR-504 and inflammatory genes, but downregulated Grb10. Conclusions: Diabetes mellitus misregulates several miRNAs including miR-504 that can promote VSMC dysfunction. Because changes in many of these miRNAs are sustained in diabetic VSMC even after in vitro culture, they may be involved in metabolic memory of vascular complications. Targeting such mechanisms could offer novel therapeutic strategies for diabetic complications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。