CircAGO2 promotes colorectal cancer progression by inhibiting heat shock protein family B (small) member 8 via miR-1-3p/retinoblastoma binding protein 4 axis

CircAGO2 通过 miR-1-3p/视网膜母细胞瘤结合蛋白 4 轴抑制热休克蛋白 B 家族(小)成员 8 来促进结直肠癌进展

阅读:4
作者:Xijia Zhu #, Xishun Luo #, Xiangkai Long, Shiyu Jiang, Xinyang Xie, Qiqi Zhang, Haipeng Wang

Abstract

This paper was to uncover the mechanism of circular RNA Argonaute 2 (circAGO2) in colorectal cancer (CRC) progression. The expression of circAGO2 was detected in CRC cells and tissues, and the relationship between clinicopathological features of CRC and circAGO2 level was evaluated. The growth and invasion of CRC cells and subcutaneous xenograft of nude mice were measured to evaluate the effect of circAGO2 on CRC development. Bioinformatics databases were applied to analyze levels of retinoblastoma binding protein 4 (RBBP4) and heat shock protein family B 8 (HSPB8) in cancer tissues. The relevance of circAGO2 and RBBP4 expression and the relationship between RBBP4 and HSPB8 during histone acetylation were assessed. The targeting relationship between miR-1-3p and circAGO2 or RBBP4 was predicted and confirmed. The effects of miR-1-3p and RBBP4 on biological functions of CRC cells were also verified. CircAGO2 was upregulated in CRC. CircAGO2 promoted the growth and invasion of CRC cells. CircAGO2 competitively bound to miR-1-3p and regulated RBBP4 expression, thus inhibiting HSPB8 transcription by promoting histone deacetylation. Silencing circAGO2 enhanced miR-1-3p expression and reduced RBBP4 expression, while suppression of miR-1-3p downgraded levels of miR-1-3p, up-regulated RBBP4, and facilitated cell proliferation and invasion in the presence of silencing circAGO2. RBBP4 silencing decreased RBBP4 expression and reduced proliferation and invasion of cells where circAGO2 and miR-1-3p were silenced. CircAGO2 overexpression decoyed miR-1-3p to increase RBBP4 expression, which inhibited HSPB8 transcription via histone deacetylation in HSPB8 promoter region, promoting proliferation and invasion of CRC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。