Bionic peptide scaffold in situ polarization and recruitment of M2 macrophages to promote peripheral nerve regeneration

仿生肽支架原位极化募集M2巨噬细胞促进周围神经再生

阅读:6
作者:Pengxiang Yang, Yong Peng, Xiu Dai, Jing Jie, Deling Kong, Xiaosong Gu, Yumin Yang

Abstract

Tissue regeneration requires exogenous and endogenous signals, and there is increasing evidence that the exogenous microenvironment may play an even more dominant role in the complex process of coordinated multiple cells. The short-distance peripheral nerve showed a spontaneous regenerative phenomenon, which was initiated by the guiding role of macrophages. However, it cannot sufficiently restore long-distance nerve injury by itself. Based on this principle, we firstly constructed a proinflammatory model to prove that abnormal M2 expression reduce the guidance and repair effect of long-distance nerves. Furthermore, a bionic peptide hydrogel scaffold based on self-assembly was developed to envelop M2-derived regenerative cytokines and extracellular vesicles (EVs). The cytokines and EVs were quantified to mimic the guidance and regenerative microenvironment in a direct and mild manner. The bionic scaffold promoted M2 transformation in situ and led to proliferation and migration of Schwann cells, neuron growth and motor function recovery. Meanwhile, the peptide scaffold combined with CX3CL1 recruited more blood-derived M2 macrophages to promote long-distance nerve reconstruction. Overall, we systematically confirmed the important role of M2 in regulating and restoring the injury peripheral nerve. This bionic peptide hydrogel scaffold mimicked and remodeled the local environment for M2 transformation and recruitment, favoring long-distance peripheral nerve regeneration. It can help to explicate regulative effect of M2 may be a cause not just a consequence in nerve repair and tissue integration, which facilitating the development of pro-regenerative biomaterials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。