Type 2 Dendritic Cells Orchestrate a Local Immune Circuit to Confer Antimetastatic Immunity

型树突状细胞协调局部免疫回路,产生抗转移免疫力

阅读:5
作者:Orr-El Weizman, Sophia Luyten, Irina Krykbaeva, Eric Song, Tianyang Mao, Marcus Bosenberg, Akiko Iwasaki

Abstract

The progression of transformed primary tumors to metastatic colonization is a lethal determinant of disease outcome. Although circulating adaptive and innate lymphocyte effector responses are required for effective antimetastatic immunity, whether tissue-resident immune circuits confer initial immunity at sites of metastatic dissemination remains ill defined. Here we examine the nature of local immune cell responses during early metastatic seeding in the lung using intracardiac injection to mimic monodispersed metastatic spread. Using syngeneic murine melanoma and colon cancer models, we demonstrate that lung-resident conventional type 2 dendritic cells (DC2) orchestrate a local immune circuit to confer host antimetastatic immunity. Tissue-specific ablation of lung DC2, and not peripheral DC populations, led to increased metastatic burden in the presence of an intact T cell and NK cell compartment. We demonstrate that DC nucleic acid sensing and transcription factors IRF3 and IRF7 signaling are required for early metastatic control and that DC2 serve as a robust source of proinflammatory cytokines in the lung. Critically, DC2 direct the local production of IFN-γ by lung-resident NK cells, which limits the initial metastatic burden. Collectively, our results highlight, to our knowledge, a novel DC2-NK cell axis that colocalizes around pioneering metastatic cells to orchestrate an early innate immune response program to limit initial metastatic burden in the lung.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。