Photoaging of polystyrene microspheres causes oxidative alterations to surface physicochemistry and enhances airway epithelial toxicity

聚苯乙烯微球的光老化引起表面物理化学的氧化改变并增强呼吸道上皮毒性

阅读:7
作者:Eliane El Hayek, Eliseo Castillo, Julie G In, Marcus Garcia, Jose Cerrato, Adrian Brearley, Jorge Gonzalez-Estrella, Guy Herbert, Barry Bleske, Angelica Benavidez, Hsuan Hsiao, Lei Yin, Matthew J Campen, Xiaozhong Yu

Abstract

Microplastics represent an emerging environmental contaminant, with large gaps in our understanding of human health impacts. Furthermore, environmental factors may modify the plastic chemistry, further altering the toxic potency. Ultraviolet (UV) light is one such unavoidable factor for airborne microplastic particulates and a known modifier of polystyrene surface chemistry. As an experimental model, we aged commercially available polystyrene microspheres for 5 weeks with UV radiation, then compared the cellular responses in A549 lung cells with both pristine and irradiated particulates. Photoaging altered the surface morphology of irradiated microspheres and increased the intensities of polar groups on the near-surface region of the particles as indicated by scanning electron microscopy and by fitting of high-resolution X-ray photoelectron spectroscopy C 1s spectra, respectively. Even at low concentrations (1-30 µg/ml), photoaged microspheres at 1 and 5 µm in diameter exerted more pronounced biological responses in the A549 cells than was caused by pristine microspheres. High-content imaging analysis revealed S and G2 cell cycle accumulation and morphological changes, which were also more pronounced in A549 cells treated with photoaged microspheres, and further influenced by the size, dose, and time of exposures. Polystyrene microspheres reduced monolayer barrier integrity and slowed regrowth in a wound healing assay in a manner dependent on dose, photoaging, and size of the microsphere. UV-photoaging generally enhanced the toxicity of polystyrene microspheres in A549 cells. Understanding the influence of weathering and environmental aging, along with size, shape, and chemistry, on microplastics biocompatibility may be an essential consideration for incorporation of different plastics in products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。