Adrenomedullin attenuates vascular calcification in fructose-induced insulin resistance rats

肾上腺髓质素减轻果糖诱导的胰岛素抵抗大鼠的血管钙化

阅读:4
作者:Y-B Zhou, Q Gao, P Li, Y Han, F Zhang, Y-F Qi, C-S Tang, X-Y Gao, G-Q Zhu

Aim

To determine the therapeutic effects of adrenomedullin (ADM) on vascular calcification and related molecular mechanism in fructose-induced insulin resistance rats.

Conclusion

Administration of ADM attenuates insulin resistance, calcium deposition and osteogenic transdifferentiation in aortic media in fructose-fed rats.

Methods

Rats received ordinary drinking water or 10% fructose in drinking water for 12 weeks and subcutaneous injection of normal saline or ADM (3.6 μg kg(-1) ) twice a day for the last 4 weeks. Levels of ADM, calcitonin receptor-like receptors (CRLR), receptor activity-modifying proteins (RAMP) as well as calcium content, alkaline phosphatase (ALP) activity, osteoblastic and contractile smooth muscle markers in aortic media were measured.

Results

The levels of ADM, CRLR, RAMP2 and RAMP3 in aortic media were increased in fructose-fed rats. ADM treatment attenuated the fructose-induced insulin resistance, increased blood pressure, fasting glucose, insulin, triglycerides and cholesterol levels. It improved VSMCs proliferation and disordered arrangement and hyperplasia of elastic fibres in fructose-fed rats. Calcium deposits, calcium content and ALP activity in the aortic media were increased in fructose-fed rats, which were attenuated by ADM treatment. The osteoblastic markers such as osteopontin (OPN), bone morphogenetic protein 2 (BMP2) proteins and core binding factor alpha-1 (Cbfα-1) protein and mRNA expressions were increased in fructose-fed rats. ADM treatment increased the OPN protein expression, but reduced the BMP2 protein, Cbfα-1 protein and mRNA expression. Contractile smooth muscle markers such as α-actin and smooth muscle 22α (SM-22α) were downregulated in fructose-fed rats, which were recovered by ADM treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。