Conclusions
Linagliptin is effective in reversing established pathological cerebrovascular remodeling associated with diabetes. Attenuation of the ET system could be a pleiotropic effect of linagliptin that provides vascular protection.
Methods
Diabetic and non-diabetic GK rats were treated with linagliptin (4weeks). MCAs were fixed in buffered 4% paraformaldehyde and used for morphometry. Human bVSMCs incubated in normal glucose (5.5mM)/high glucose (25mM) conditions were treated with the linagliptin (100nM; 24h). ET-1 secretion and ET receptors were measured in media and cell lysate respectively. Immunostaining was performed for ET-A and ET-B receptor. ET receptors were also measured in cells treated with ET-1 (100nM) and linagliptin.
Results
Linagliptin treatment regressed vascular remodeling of MCAs in diabetic animals but had no effect on blood glucose. bVSMCs in normal/high glucose condition did not show any significant difference in ET-1 secretion or ET-A and ET-B receptor expression. ET-1 treatment in high glucose condition significantly increased the ET-A receptors and this effect was inhibited by linagliptin. Conclusions: Linagliptin is effective in reversing established pathological cerebrovascular remodeling associated with diabetes. Attenuation of the ET system could be a pleiotropic effect of linagliptin that provides vascular protection.
