Conclusion
Our findings suggest that quercetin has beneficial effects on hepatic IRI. Quercetin could attenuate hepatic IRI and target inhibition of macrophage pyroptosis via blocking Caspase-8/ASC interaction. We recommend that quercetin might serve as a targeted approach for the prevention and personalized treatment of hepatic IRI in perioperative patients.
Methods
We established the hepatic IRI murine model and cellular pyroptosis model to evaluate the efficacy of quercetin.
Results
Quercetin effectively alleviated hepatic IRI-induced tissue necrosis and inflammation. We found that during hepatic IRI, the cleavage of GSDMD occurred in hepatic macrophages, but not in other non-parenchymal cells. Quercetin inhibited the cleavage of GSDMD in macrophages. Moreover, we found that quercetin blocked the ASC assembly to inhibit the formation of NLRP3 inflammasomes and AIM2 inflammasomes, suppressing macrophage pyroptosis. Co-immunoprecipitation experiments confirmed that quercetin inhibited the interaction between ASC and Caspase-8, which is the mechanism of ASC complex and inflammasome formation. Overexpression of Caspase-8 abolished the anti-pyroptosis effect of quercetin in NLRP3 and AIM2 inflammasome signaling. Furthermore, we found that the hepatoprotective activity of quercetin was reduced in myelocytic GSDMD-deficient mice.
