Senescence Alters PPARγ (Peroxisome Proliferator-Activated Receptor Gamma)-Dependent Fatty Acid Handling in Human Adipose Tissue Microvascular Endothelial Cells and Favors Inflammation

衰老改变人类脂肪组织微血管内皮细胞中 PPARγ(过氧化物酶体增殖激活受体γ)依赖的脂肪酸处理并促进炎症

阅读:7
作者:Anaïs Briot, Pauline Decaunes, Fanny Volat, Chloé Belles, Muriel Coupaye, Séverine Ledoux, Anne Bouloumié

Approach and results

We used freshly isolated primary microvascular ECs from human AT. Our data identified the endothelial FA handling machinery including FATPs (FA transport proteins) FATP1, FATP3, FATP4, and CD36 as well as FABP4 (FA binding protein 4). We showed that PPARγ (peroxisome proliferator-activated receptor gamma) regulates the expression of FATP1, CD36, and FABP4 and is a major regulator of FA uptake in human AT EC (hATEC). We provided evidence that endothelial PPARγ activity is modulated by senescence. Indeed, the positive regulation of FA transport by PPARγ agonist was abolished, whereas the emergence of an inflammatory response was favored in senescent hATEC. This was associated with the retention of nuclear FOXO1 (forkhead box protein O1), whereas nuclear PPARγ translocation was impaired. Conclusions: These data support the notion that PPARγ is a key regulator of primary hATEC function including FA handling and inflammatory response. However, the outcome of PPARγ activation is modulated by senescence, a phenomenon that may impact the ability of hATEC to properly respond to and handle lipid fluxes. Finally, our work highlights the role of hATEC in the regulation of FA fluxes and reveals that dysfunction of these cells with accelerated aging is likely to participate to AT dysfunction and the redistribution of lipids.

Conclusions

These data support the notion that PPARγ is a key regulator of primary hATEC function including FA handling and inflammatory response. However, the outcome of PPARγ activation is modulated by senescence, a phenomenon that may impact the ability of hATEC to properly respond to and handle lipid fluxes. Finally, our work highlights the role of hATEC in the regulation of FA fluxes and reveals that dysfunction of these cells with accelerated aging is likely to participate to AT dysfunction and the redistribution of lipids.

Objective

Adipose tissue (AT) dysfunction associated with obesity or aging is a major cause for lipid redistribution and the progression of cardiometabolic disorders. Our goal is to decipher the contribution of human AT microvascular endothelial cells (ECs) in the maintenance of fatty acid (FA) fluxes and the impact of senescence on their function. Approach and

Results

We used freshly isolated primary microvascular ECs from human AT. Our data identified the endothelial FA handling machinery including FATPs (FA transport proteins) FATP1, FATP3, FATP4, and CD36 as well as FABP4 (FA binding protein 4). We showed that PPARγ (peroxisome proliferator-activated receptor gamma) regulates the expression of FATP1, CD36, and FABP4 and is a major regulator of FA uptake in human AT EC (hATEC). We provided evidence that endothelial PPARγ activity is modulated by senescence. Indeed, the positive regulation of FA transport by PPARγ agonist was abolished, whereas the emergence of an inflammatory response was favored in senescent hATEC. This was associated with the retention of nuclear FOXO1 (forkhead box protein O1), whereas nuclear PPARγ translocation was impaired. Conclusions: These data support the notion that PPARγ is a key regulator of primary hATEC function including FA handling and inflammatory response. However, the outcome of PPARγ activation is modulated by senescence, a phenomenon that may impact the ability of hATEC to properly respond to and handle lipid fluxes. Finally, our work highlights the role of hATEC in the regulation of FA fluxes and reveals that dysfunction of these cells with accelerated aging is likely to participate to AT dysfunction and the redistribution of lipids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。