Molecular transitions in early progenitors during human cord blood hematopoiesis

人类脐带血造血过程中早期祖细胞的分子转变

阅读:2
作者:Shiwei Zheng ,Efthymia Papalexi ,Andrew Butler ,William Stephenson ,Rahul Satija

Abstract

Hematopoietic stem cells (HSCs) give rise to diverse cell types in the blood system, yet our molecular understanding of the early trajectories that generate this enormous diversity in humans remains incomplete. Here, we leverage Drop-seq, a massively parallel single-cell RNA sequencing (scRNA-seq) approach, to individually profile 20,000 progenitor cells from human cord blood, without prior enrichment or depletion for individual lineages based on surface markers. Our data reveal a transcriptional compendium of progenitor states in human cord blood, representing four committed lineages downstream from HSC, alongside the transcriptional dynamics underlying fate commitment. We identify intermediate stages that simultaneously co-express "primed" programs for multiple downstream lineages, and also observe striking heterogeneity in the early molecular transitions between myeloid subsets. Integrating our data with a recently published scRNA-seq dataset from human bone marrow, we illustrate the molecular similarity between these two commonly used systems and further explore the chromatin dynamics of "primed" transcriptional programs based on ATAC-seq. Finally, we demonstrate that Drop-seq data can be utilized to identify new heterogeneous surface markers of cell state that correlate with functional output.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。