IL-10 produced by induced regulatory T cells (iTregs) controls colitis and pathogenic ex-iTregs during immunotherapy

诱导调节性 T 细胞 (iTregs) 产生的 IL-10 在免疫治疗期间控制结肠炎和致病性 ex-iTregs

阅读:7
作者:Erica G Schmitt, Dipica Haribhai, Jason B Williams, Praful Aggarwal, Shuang Jia, Louis-Marie Charbonnier, Ke Yan, Rachel Lorier, Amy Turner, Jennifer Ziegelbauer, Peter Georgiev, Pippa Simpson, Nita H Salzman, Martin J Hessner, Ulrich Broeckel, Talal A Chatila, Calvin B Williams

Abstract

"Natural" regulatory T cells (nTregs) that express the transcription factor Foxp3 and produce IL-10 are required for systemic immunological tolerance. "Induced" regulatory T cells (iTregs) are nonredundant and essential for tolerance at mucosal surfaces, yet their mechanisms of suppression and stability are unknown. We investigated the role of iTreg-produced IL-10 and iTreg fate in a treatment model of inflammatory bowel disease. Colitis was induced in Rag1(-/-) mice by the adoptive transfer of naive CD4(+) T cells carrying a nonfunctional Foxp3 allele. At the onset of weight loss, mice were treated with both iTregs and nTregs where one marked subset was selectively IL-10 deficient. Body weight assessment, histological scoring, cytokine analysis, and flow cytometry were used to monitor disease activity. Transcriptional profiling and TCR repertoire analysis were used to track cell fate. When nTregs were present but IL-10 deficient, iTreg-produced IL-10 was necessary and sufficient for the treatment of disease, and vice versa. Invariably, ∼85% of the transferred iTregs lost Foxp3 expression (ex-iTregs) but retained a portion of the iTreg transcriptome, which failed to limit their pathogenic potential upon retransfer. TCR repertoire analysis revealed no clonal relationships between iTregs and ex-iTregs, either within mice or between mice treated with the same cells. These data identify a dynamic IL-10-dependent functional reciprocity between regulatory T cell subsets that maintains mucosal tolerance. The niche supporting stable iTregs is limited and readily saturated, which promotes a large population of ex-iTregs with pathogenic potential during immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。