Increase of vesicular glutamate transporter 2 co-expression in the deep cerebellar nuclei related to skilled reach learning

小脑深部核中囊泡谷氨酸转运体 2 共表达增加与熟练伸展学习有关

阅读:7
作者:Haian Mao, Tomás Mediavilla, Héctor Estévez-Silva, Daniel Marcellino, Fahad Sultan

Abstract

Motor learning induces plasticity in multiple brain regions involving the cerebellum as a crucial player. Synaptic plasticity in the excitatory collaterals to the cerebellar output, the deep cerebellar nuclei (DCN), have recently been shown to be an important part of motor learning. These synapses are composed of climbing fiber (CF) and mossy fiber synapses, with the former conveying unconditioned and the latter conditioned responses in classical conditioning paradigms. The CF synapse on to the cerebellar cortex and the DCN express vesicular transporter 2 (vGluT2), whereas mossy fibers express vGluT1 and /or vGluT2 in their terminals. However, the underlying regulatory mechanism of vGluT expression in the DCN remains unknown. Here we confirm the increase of vGluT2 in a specific part of the DCN during the acquisition of a skilled reaching task in mice. Furthermore, our findings show that this is due to an increase in co-expression of vGluT2 in vGluT1 presynapses instead of the formation of new vGluT2 synapses. Our data indicate that remodeling of synapses - in contrast to synaptogenesis - also plays an important role in motor learning and may explain the presence of both vGluT's in some mossy fiber synapses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。