Striatal Tyrosine Hydroxylase Is Stimulated via TAAR1 by 3-Iodothyronamine, But Not by Tyramine or β-Phenylethylamine

3-碘甲状腺原胺通过 TAAR1 刺激纹状体酪氨酸羟化酶,但酪胺或 β-苯乙胺则不刺激纹状体酪氨酸羟化酶

阅读:5
作者:Xiaoqun Zhang, Ioannis Mantas, Alexandra Alvarsson, Takashi Yoshitake, Mohammadreza Shariatgorji, Marcela Pereira, Anna Nilsson, Jan Kehr, Per E Andrén, Mark J Millan, Karima Chergui, Per Svenningsson

Abstract

The trace amine-associated receptor 1 (TAAR1) is expressed by dopaminergic neurons, but the precise influence of trace amines upon their functional activity remains to be fully characterized. Here, we examined the regulation of tyrosine hydroxylase (TH) by tyramine and beta-phenylethylamine (β-PEA) compared to 3-iodothyronamine (T1AM). Immunoblotting and amperometry were performed in dorsal striatal slices from wild-type (WT) and TAAR1 knockout (KO) mice. T1AM increased TH phosphorylation at both Ser19 and Ser40, actions that should promote functional activity of TH. Indeed, HPLC data revealed higher rates of L-dihydroxyphenylalanine (DOPA) accumulation in WT animals treated with T1AM after the administration of a DOPA decarboxylase inhibitor. These effects were abolished both in TAAR1 KO mice and by the TAAR1 antagonist, EPPTB. Further, they were specific inasmuch as Ser845 phosphorylation of the post-synaptic GluA1 AMPAR subunit was unaffected. The effects of T1AM on TH phosphorylation at both Ser19 (CamKII-targeted), and Ser40 (PKA-phosphorylated) were inhibited by KN-92 and H-89, inhibitors of CamKII and PKA respectively. Conversely, there was no effect of an EPAC analog, 8-CPT-2Me-cAMP, on TH phosphorylation. In line with these data, T1AM increased evoked striatal dopamine release in TAAR1 WT mice, an action blunted in TAAR1 KO mice and by EPPTB. Mass spectrometry imaging revealed no endogenous T1AM in the brain, but detected T1AM in several brain areas upon systemic administration in both WT and TAAR1 KO mice. In contrast to T1AM, tyramine decreased the phosphorylation of Ser40-TH, while increasing Ser845-GluA1 phosphorylation, actions that were not blocked in TAAR1 KO mice. Likewise, β-PEA reduced Ser40-TH and tended to promote Ser845-GluA1 phosphorylation. The D1 receptor antagonist SCH23390 blocked tyramine-induced Ser845-GluA1 phosphorylation, but had no effect on tyramine- or β-PEA-induced Ser40-TH phosphorylation. In conclusion, by intracellular cascades involving CaMKII and PKA, T1AM, but not tyramine and β-PEA, acts via TAAR1 to promote the phosphorylation and functional activity of TH in the dorsal striatum, supporting a modulatory influence on dopamine transmission.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。