Chronic depletion of glutathione exacerbates ventricular remodelling and dysfunction in the pressure-overloaded heart

谷胱甘肽的慢性消耗会加剧压力超负荷心脏的心室重塑和功能障碍

阅读:4
作者:Yosuke Watanabe, Kazuhiro Watanabe, Tsuyoshi Kobayashi, Yukio Saito, Daisuke Fujioka, Takamitsu Nakamura, Jun-ei Obata, Kenichi Kawabata, Hideto Mishina, Kiyotaka Kugiyama

Aims

Chronic depletion of myocardial glutathione (GSH) may play a role in cardiac remodelling and dysfunction. This study examined the relationship between chronic GSH depletion and cardiac failure induced by pressure overload in mice lacking the modifier subunit (GCLM) of glutamate-cysteine ligase, the rate-limiting enzyme for GSH synthesis. In addition, we examined the association between idiopathic dilated cardiomyopathy (DCM) in humans and -588C/T polymorphism of the GCLM gene, which reduces plasma levels of GSH.

Conclusion

Chronic depletion of GSH exacerbates remodelling and dysfunction in the pressure-overloaded heart. The clinical relevance of this mouse model is supported by a significant association between -588T polymorphism of the GCLM gene and patients with DCM.

Results

Pressure overload in mice was created by transverse aortic constriction (TAC). Myocardial GSH levels after TAC in GCLM(-/-) mice were 31% of those in GCLM(+/+) mice. TAC resulted in greater heart and lung-weight-to-body-weight ratios, greater dilation and dysfunction of left ventricle, more extensive myocardial fibrosis, and worse survival in GCLM(-/-) than GCLM(+/+) mice. Supplementation of GSH diethyl ester reversed the left-ventricular dilation and contractile dysfunction and the increased myocardial fibrosis after TAC in GCLM(-/-) mice. The prevalence of -588T polymorphism of the GCLM gene was significantly higher in DCM patients (n = 205) than in age- and sex-matched control subjects (n = 253) (36 vs. 19%, respectively, P < 0.001). The -588T polymorphism increased the risk of DCM that was independent of age, diabetes, and systolic blood pressure (OR 3.13, 95% CI: 2.28-4.44; P < 0.0001).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。