LCZ696 Therapy Reduces Ventricular Tachyarrhythmia Inducibility in a Myocardial Infarction-Induced Heart Failure Rat Model

LCZ696 疗法可降低心肌梗死诱发心力衰竭大鼠模型中室性心动过速的诱发率

阅读:6
作者:Po-Cheng Chang, Shien-Fong Lin, Yen Chu, Hung-Ta Wo, Hui-Ling Lee, Yu-Chang Huang, Ming-Shien Wen, Chung-Chuan Chou

Background

LCZ696 (valsartan/sacubitril) therapy significantly reduced mortality in patients with heart failure (HF). Although a clinical trial (PARADISE-MI Trial) has been ongoing to examine the effects of LCZ696 in myocardial infarction (MI) patients, the effects of LCZ696 on remodeling of cardiac electrophysiology in animal models remain largely unclear.

Conclusion

As compared with enalapril therapy, LCZ696 therapy led to improvement of LVEF, reduced VA inducibility, and upregulated expression of K+ channel proteins.

Methods

We performed coronary artery ligation to create MI in Sprague-Dawley rats. Echocardiography was performed one week after MI to confirm the development of HF with left ventricular ejection fraction ≤ 40%. MI rats were randomly assigned to receive medical therapy for 4 weeks: LCZ696, enalapril, or vehicle. The sham-operation rats received sham operation without MI creation. In vivo electrophysiological exams were performed under general anesthesia. Western blot analyses were conducted to quantify ion channel proteins.

Results

The HF-vehicle group did not show significant changes in LVEF. Both enalapril and LCZ696 therapy significantly improved LVEF. The HF-vehicle group had higher ventricular arrhythmia (VA) inducibility than the sham group. As compared with the HF-vehicle group, LCZ696 therapy significantly reduced VA inducibility, but enalapril therapy did not. Western blot analyses showed significant downregulation of NaV1.5, ERG, KCNE1, and KCNE2 channel proteins in the HF vehicle group compared with the sham group. LCZ696 therapy upregulated protein expression of ERG, KCNE1, and KCNE2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。