An electronic biosensor based on semiconducting tetrazine polymer immobilizing matrix coated on rGO for carcinoembryonic antigen

基于半导体四嗪聚合物固定基质涂覆rGO的电子生物传感器,用于检测癌胚抗原

阅读:8
作者:Sowmya Joshi #, K Aswani Raj #, M Rajeswara Rao, Ruma Ghosh

Abstract

Point-of-care devices are expected to play very critical roles in early diagnosis and better treatment of cancer. Here, we report the end-to-end development of novel and portable biosensors for detecting carcinoembryonic antigen (CEA), a cancer biomarker, almost instantly at room temperature. The device uses reduced graphene oxide (rGO) as the base conducting layer and a novel poly[(1,4-phenylene)-alt-(3,6-(1,2,4,5-tetrazine)/3,6-(1,2,4,5-dihydrotetrazine))] (PhPTz) as an immobilizing matrix for the CEA antibodies. Judiciously introduced nitrogen-rich semiconducting PhPTz brings multiple advantages to the device-(1) efficiently immobilizes anti-CEA via synergistic H-bonding with peptide and N-glycal units and (2) transports the charge density variations, originated upon antibody-antigen interactions, to the rGO layer. The CEA was dropped onto the anti-CEA/PhPTz/rGO devices at ambient conditions, to facilitate binding and the change in current flowing through the sensors was measured. A response of 2.75-33.7 μA was observed when the devices were tested for a broad range of concentrations (0.25 pg/mL to 800 ng/mL) of CEA. A portable read-out circuit was assembled using Arduino UNO and a voltage divider circuit, and a simple algorithm was developed for the classification of the CEA concentrations. The prediction accuracy of the interfacing electronics along with the algorithm was found to be 100%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。