Red ginseng extract attenuates kainate-induced excitotoxicity by antioxidative effects

红参提取物通过抗氧化作用减轻海人参酸诱发的兴奋毒性

阅读:5
作者:Jin-Yi Han, Sun-Young Ahn, Eun-Hye Oh, Sang-Yoon Nam, Jin Tae Hong, Ki-Wan Oh, Mi Kyeong Lee

Abstract

This study investigated the neuroprotective activity of red ginseng extract (RGE, Panax ginseng, C. A. Meyer) against kainic acid- (KA-) induced excitotoxicity in vitro and in vivo. In hippocampal cells, RGE inhibited KA-induced excitotoxicity in a dose-dependent manner as measured by the MTT assay. To study the possible mechanisms of the RGE-mediated neuroprotective effect against KA-induced cytotoxicity, we examined the levels of intracellular reactive oxygen species (ROS) and [Ca(2+)](i) in cultured hippocampal neurons and found that RGE treatment dose-dependently inhibited intracellular ROS and [Ca(2+)](i) elevation. Oral administration of RGE (30 and 200 mg/kg) in mice decreased the malondialdehyde (MDA) level induced by KA injection (30 mg/kg, i.p.). In addition, similar results were obtained after pretreatment with the radical scavengers Trolox and N, N'-dimethylthiourea (DMTU). Finally, after confirming the protective effect of RGE on hippocampal brain-derived neurotropic factor (BDNF) protein levels, we found that RGE is active compounds mixture in KA-induced hippocampal mossy-fiber function improvement. Furthermore, RGE eliminated 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, and the IC(50) was approximately 10 mg/ml. The reductive activity of RGE, as measured by reaction with hydroxyl radical ((•)OH), was similar to trolox. The second-order rate constant of RGE for (•)OH was 3.5-4.5 × 10(9) M(-1)·S(-1). Therefore, these results indicate that RGE possesses radical reduction activity and alleviates KA-induced excitotoxicity by quenching ROS in hippocampal neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。