Linear, Electron-Rich Erbium Single-Molecule Magnet with Dibenzocyclooctatetraene Ligands

具有二苯并环辛四烯配体的线性、富电子铒单分子磁体

阅读:9
作者:Ernesto Castellanos, Florian Benner, Selvan Demir

Abstract

Judicious design of ligand scaffolds to highly anisotropic lanthanide ions led to substantial advances in molecular spintronics and single-molecule magnetism. Erbium-based single-molecule magnets (SMMs) are rare, which is attributed to the prolate-shaped ErIII ion requiring an equatorial ligand field for enhancing its single-ion magnetic anisotropy. Here, we present an electron-rich mononuclear Er SMM, [K(crypt-222)][Er(dbCOT)2], 1 (where dbCOT = dibenzocyclooctatetraene), that was obtained from a salt metathesis reaction of ErCl3 and K2dbCOT. The dipotassium salt, K2dbCOT, was generated through a two-electron reduction of the bare dbCOT0 ligand employing potassium graphite and was crystallized from DME to give the new solvated complex, [K(DME)]2[dbCOT]n, 2. 1 was analyzed through crystallography, electrochemistry, spectroscopy, magnetometry, and CASSCF calculations. The structure of 1 consists of an anionic metallocene complex featuring a linear (180.0°) geometry with an ErIII ion sandwiched between dianionic dbCOT ligands and an outer-sphere K+ ion encapsulated in 2.2.2-cryptand. Two pronounced redox events at negative potentials allude to the formation of a trianionic erbocene complex, [Er(dbCOT)2]3-, on the electrochemical time scale. 1 shows slow magnetic relaxation with an effective spin-reversal barrier of Ueff = 114(2) cm-1, which is close in magnitude to the calculated energies of the first and second excited states of 96.9 and 109.13 cm-1, respectively. 1 exhibits waist-constricted hysteresis loops below 4 K and constitutes the first example of an erbocene-SMM bearing fused aromatic rings to the central COT ligand. Notably, 1 comprises the largest COT scaffold implemented in erbocene SMMs, yielding the most electron-rich homoleptic erbium metallocene SMM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。