SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells

SIM 成像解析了 SARS-CoV-2 刺突 RBD 在活细胞中的内吞作用

阅读:4
作者:Lu Miao, Chunyu Yan, Yingzhu Chen, Wei Zhou, Xuelian Zhou, Qinglong Qiao, Zhaochao Xu

Abstract

It is urgent to understand the infection mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for the prevention and treatment of COVID-19. The infection of SARS-CoV-2 starts when the receptor-binding domain (RBD) of viral spike protein binds to angiotensin-converting enzyme 2 (ACE2) of the host cell, but the endocytosis details after this binding are not clear. Here, RBD and ACE2 were genetically coded and labeled with organic dyes to track RBD endocytosis in living cells. The photostable dyes enable long-term structured illumination microscopy (SIM) imaging and to quantify RBD-ACE2 binding (RAB) by the intensity ratio of RBD/ACE2 fluorescence. We resolved RAB endocytosis in living cells, including RBD-ACE2 recognition, cofactor-regulated membrane internalization, RAB-bearing vesicle formation and transport, RAB degradation, and downregulation of ACE2. The RAB was found to activate the RBD internalization. After vesicles were transported and matured within cells, RAB was finally degraded after being taken up by lysosomes. This strategy is a promising tool to understand the infection mechanism of SARS-CoV-2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。