Dodecaploid Xenopus longipes provides insight into the emergence of size scaling relationships during development

十二倍体长足爪蟾 (Xenopus longipes) 揭示了发育过程中尺寸缩放关系的出现

阅读:3
作者:Kelly E Miller, Clotilde Cadart, Rebecca Heald

Abstract

Genome and cell size are strongly correlated across species1,2,3,4,5,6 and influence physiological traits like developmental rate.7,8,9,10,11,12 Although size scaling features such as the nuclear-cytoplasmic (N/C) ratio are precisely maintained in adult tissues,13 it is unclear when during embryonic development size scaling relationships are established. Frogs of the genus Xenopus provide a model to investigate this question, since 29 extant Xenopus species vary in ploidy from 2 to 12 copies (N) of the ancestral frog genome, ranging from 20 to 108 chromosomes.14,15 The most widely studied species, X. laevis (4N = 36) and X. tropicalis (2N = 20), scale at all levels, from body size to cellular and subcellular levels.16 Paradoxically, the rare, critically endangered dodecaploid (12N = 108) Xenopus longipes (X. longipes) is a small frog.15,17 We observed that despite some morphological differences, X. longipes and X. laevis embryogenesis occurred with similar timing, with genome to cell size scaling emerging at the swimming tadpole stage. Across the three species, cell size was determined primarily by egg size, whereas nuclear size correlated with genome size during embryogenesis, resulting in different N/C ratios in blastulae prior to gastrulation. At the subcellular level, nuclear size correlated more strongly with genome size, whereas mitotic spindle size scaled with cell size. Our cross-species study indicates that scaling of cell size to ploidy is not due to abrupt changes in cell division timing, that different size scaling regimes occur during embryogenesis, and that the developmental program of Xenopus is remarkably consistent across a wide range of genome and egg sizes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。