Adipose-Derived Mesenchymal Stem Cells Ameliorating Pseudomonas aeruginosa-induced Acute Lung Infection via Inhibition of NLRC4 Inflammasome

脂肪来源的间充质干细胞通过抑制 NLRC4 炎症小体改善铜绿假单胞菌诱发的急性肺部感染

阅读:6
作者:Lu-Lu Li, Ying-Gang Zhu, Xin-Ming Jia, Dong Liu, Jie-Ming Qu

Background

Pseudomonas aeruginosa (PA) is one of the most common Gram-negative bacteria causing hospital-acquired pulmonary infection, with high drug resistance and mortality. Therefore, it is urgent to introduce new non-antibiotic treatment strategies. Mesenchymal stem cells (MSCs), as important members of the stem cell family, were demonstrated to alleviate pathological damage in acute lung injury. However, the potential mechanism how MSC alleviate acute lung infection caused by PA remains unclear.

Conclusions

PA infection attenuated macrophage phagocytosis through activation of NLRC4 inflammasome in macrophages, which eventually led to pulmonary inflammatory damage in mouse; ASCs reduced the activation of NLRC4 inflammasome in macrophages induced by PA infection, thereby increasing the phagocytic ability of macrophages, and ultimately improving lung tissue damage in mouse; ASCs may inhibit NLRC4 inflammasome through the secretion of STC-1.

Methods

The therapeutic and mechanistic effects of ASCs on PA pulmonary infection were evaluated respectively in a murine model as well as in an in vitro model stimulated by PA and co-cultured with ASCs.

Objective

The purpose of this study was to investigate the effects of Adipose-derived mesenchymal stem cells (ASCs) on acute pulmonary infections and the possible mechanisms how ASCs reduce pulmonary inflammation induced by PA.

Results

1. ASCs treatment significantly reduced the bacterial load, inflammation of lung tissue and histopathological damage by PA. 2. PA infection mainly activated Nod-like receptor containing a caspase activating and recruitment domain 4 (NLRC4) inflammasome in the lung of mice. ASCs attenuated acute lung infection in mice by inhibiting NLRC4 inflammasome activation. 3. NLRC4-/- mice showed a significant improvement in survival rate and lung bacterial load after PA infection. 4. ASCs mainly increased expression and secretion of STC-1 in response to PA-stimulated NLRC4 inflammasome activation. Conclusions: PA infection attenuated macrophage phagocytosis through activation of NLRC4 inflammasome in macrophages, which eventually led to pulmonary inflammatory damage in mouse; ASCs reduced the activation of NLRC4 inflammasome in macrophages induced by PA infection, thereby increasing the phagocytic ability of macrophages, and ultimately improving lung tissue damage in mouse; ASCs may inhibit NLRC4 inflammasome through the secretion of STC-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。