A novel peptide Phylloseptin-PBu from Phyllomedusa burmeisteri possesses insulinotropic activity via potassium channel and GLP-1 receptor signalling

来自 Phyllomedusa burmeisteri 的新型肽 Phylloseptin-PBu 通过钾通道和 GLP-1 受体信号传导具有促胰岛素活性

阅读:4
作者:Qilin Long, Lei Wang, Mei Zhou, Yuxin Wu, Tianbao Chen

Abstract

Insulin, as one of the most important hormones regulating energy metabolism, plays an essential role in maintaining glucose and lipid homeostasis in vivo. Failure or insufficiency of insulin secretion from pancreatic beta-cells increases glucose and free fatty acid level in circulation and subsequently contributes to the emergence of hyperglycaemia and dyslipidaemia. Therefore, stimulating the insulin release benefits the treatment of type 2 diabetes and obesity significantly. Frog skin peptides have been extensively studied for their biological functions, among which, Phylloseptin peptides discovered in Phyllomedusinae frogs have been found to exert antimicrobial, antiproliferative and insulinotropic activities, while the mechanism associated with Phylloseptin-induced insulin secretion remains elusive. In this study, we reported a novel peptide named Phylloseptin-PBu, isolated and identified from Phyllomedusa burmeisteri, exhibited dose-dependent insulinotropic property in rat pancreatic beta BRIN-BD11 cells without altering cell membrane integrity. Further mechanism investigations revealed that Phylloseptin-PBu-induced insulin output is predominantly modulated by KATP -[K+ ] channel depolarization triggered extracellular calcium influx and GLP-1 receptor initiated PKA signalling activation. Overall, our study highlighted that this novel Phylloseptin-PBu peptide has clear potential to be developed as a potent antidiabetic agent with established function-traced mechanism and low risk of cytotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。