Inhibiting Bruton's tyrosine kinase rescues mice from lethal influenza-induced acute lung injury

抑制布鲁顿酪氨酸激酶可挽救小鼠免于致命流感引起的急性肺损伤

阅读:6
作者:Jon M Florence, Agnieszka Krupa, Laela M Booshehri, Sandra A Davis, Michael A Matthay, Anna K Kurdowska

Abstract

Infection with seasonal influenza A virus (IAV) leads to lung inflammation and respiratory failure, a main cause of death in influenza-infected patients. Previous experiments in our laboratory indicate that Bruton's tyrosine kinase (Btk) plays a substantial role in regulating inflammation in the respiratory region during acute lung injury in mice; therefore, we sought to determine if blocking Btk activity has a protective effect in the lung during influenza-induced inflammation. The Btk inhibitor ibrutinib (also known as PCI-32765) was administered intranasally to mice starting 72 h after lethal infection with IAV. Our data indicate that treatment with the Btk inhibitor not only reduced weight loss and led to survival, but also had a dramatic effect on morphological changes to the lungs, in IAV-infected mice. Attenuation of lung inflammation indicative of acute lung injury, such as alveolar hemorrhage, interstitial thickening, and the presence of alveolar exudate, together with reduced levels of the inflammatory mediators TNFα, IL-1β, IL-6, KC, and MCP-1, strongly suggests amelioration of the pathological immune response in the lungs to promote resolution of the infection. Finally, we observed that blocking Btk specifically in the alveolar compartment led to significant attenuation of neutrophil extracellular traps released into the lung in vivo and neutrophil extracellular trap formation in vitro. Our innovative findings suggest that Btk may be a new drug target for influenza-induced lung injury, and, in general, that immunomodulatory treatment may be key in treating lung dysfunction driven by excessive inflammation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。