Loss-of-function variants within LMOD1 actin-binding site 2 cause pediatric intestinal pseudo-obstruction by impairing protein stability and actin nucleation

LMOD1 肌动蛋白结合位点 2 内的功能丧失变异通过损害蛋白质稳定性和肌动蛋白成核导致儿童肠假性梗阻

阅读:6
作者:Keqiang Liu, Lina Lu, Shanshan Chen, Beilin Gu, Hui Cai, Ying Wang, Wei Cai

Abstract

The leiomodin1 (LMOD1) gene, encoding a potent actin nucleator, was recently reported as a potential pathogenic gene of megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS, OMIM 619362). However, only a single patient has been reported to have LMOD1 mutations, and the underlying pathogenic mechanism remains unknown. Here, we described a male infant with LMOD1 mutations presenting typical symptoms of pediatric intestinal pseudo-obstruction (PIPO) but without megacystis and microcolon. Two compound heterozygous missense variants (c.1106C>T, p.T369M; c.1262G>A, p.R421H) were identified, both affecting highly conserved amino acid residues within the second actin-binding site (ABS2) domain of LMOD1. Expression analysis showed that both variants resulted in significantly reduced protein amounts, especially for p.T369M, which was almost undetectable. The reduction was only partially rescued by the proteasome inhibitor MG-132, indicating that there might be proteasome-independent pathways involved in the degradation of the mutant proteins. Molecular modeling showed that variant p.T369M impaired the local protein conformation of the ABS2 domain, while variant p.R421H directly impaired the intermolecular interaction between ABS2 and actin. Accordingly, both variants significantly damaged LMOD1-mediated actin nucleation. These findings provide further human genetic evidence supporting LMOD1 as a pathogenic gene underlying visceral myopathy including PIPO and MMIHS, strengthen the critical role of ABS2 domain in LMOD1-mediated actin nucleation, and moreover, reveal an unrecognized role of ABS2 in protein stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。