Polysaccharide from Angelica sinensis protects H9c2 cells against oxidative injury and endoplasmic reticulum stress by activating the ATF6 pathway

当归多糖通过激活ATF6通路保护H9c2细胞免受氧化损伤和内质网应激

阅读:6
作者:Xiaowei Niu, Jingjing Zhang, Chun Ling, Ming Bai, Yu Peng, Shaobo Sun, Yingdong Li, Zheng Zhang

Abstract

Objectives Angelica sinensis exerts various pharmacological effects, such as antioxidant and anti-apoptotic activity. This study aimed to investigate the active ingredients in A. sinensis with antioxidant properties and whether A. sinensis polysaccharide (ASP) protects H9c2 cells against oxidative and endoplasmic reticulum (ER) stress. Methods The ingredients of A. sinensis and their targets and related pathways were determined using web-based databases. Markers of oxidative stress, cell viability, apoptosis, and ER stress-related signalling pathways were measured in H9c2 cells treated with hydrogen peroxide (H2O2) and ASP. Results The ingredient-pathway-disease network showed that A. sinensis exerted protective effects against oxidative injury through its various active ingredients on regulation of multiple pathways. Subsequent experiments showed that ASP pretreatment significantly decreased H2O2-induced cytotoxicity and apoptosis in H9c2 cells. ASP pretreatment inhibited H2O2-induced reactive oxygen species generation, lactic dehydrogenase release, and malondialdehyde production. ASP exerted beneficial effects by inducing activating transcription factor 6 (ATF6) and increasing ATF6 target protein levels, which in turn attenuated ER stress and increased antioxidant activity. Conclusions Our findings indicate that ASP, a major water-soluble component of A. sinensis, exerts protective effects against H2O2-induced injury in H9c2 cells by activating the ATF6 pathway, thus ameliorating ER and oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。