Gamabufotalin induces a negative feedback loop connecting ATP1A3 expression and the AQP4 pathway to promote temozolomide sensitivity in glioblastoma cells by targeting the amino acid Thr794

Gamabufotalin 诱导连接 ATP1A3 表达和 AQP4 通路的负反馈回路,通过靶向氨基酸 Thr794 来促进胶质母细胞瘤细胞对替莫唑胺的敏感性

阅读:8
作者:Yu-Long Lan, Cheng Chen, Xun Wang, Jia-Cheng Lou, Jin-Shan Xing, Shuang Zou, Ji-Liang Hu, Wen Lyu, Bo Zhang

Conclusions

As the main potential target of CS-6, ATP1A3 activation critically depends on the hydrogen bonding of Thr794 with CS-6. The combination of CS-6 and TMZ could significantly reduce the therapeutic doses and promote the anti-cancer efficacy of CS-6/TMZ monotherapy.

Methods

Target fishing experiment, Western blotting, PCR, confocal immunofluorescence and molecular cloning techniques were performed to search for possible downstream signalling pathways. In addition, GBM xenografts were used to further determine the potential molecular mechanisms of the synergistic effects of CS-6 and TMZ in vivo.

Results

Mechanistic research revealed a negative feedback loop between ATP1A3 and AQP4 through which CS-6 inhibited GBM growth and mediated the synergistic treatment effect of CS-6 and TMZ. In addition, by mutating potential amino acid residues of ATP1A3, which were predicted by modelling and docking to interact with CS-6, we demonstrated that abrogating hydrogen bonding of the amino acid Thr794 interferes with the activation of ATP1A3 by CS-6 and that the Thr794Ala mutation directly affects the synergistic treatment efficacy of CS-6 and TMZ. Conclusions: As the main potential target of CS-6, ATP1A3 activation critically depends on the hydrogen bonding of Thr794 with CS-6. The combination of CS-6 and TMZ could significantly reduce the therapeutic doses and promote the anti-cancer efficacy of CS-6/TMZ monotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。