Four transcription profile-based models identify novel prognostic signatures in oesophageal cancer

四种基于转录谱的模型识别了食管癌的新预后特征

阅读:6
作者:Tongyan Liu, Panqi Fang, Chencheng Han, Zhifei Ma, Weizhang Xu, Wenjia Xia, Jingwen Hu, Youtao Xu, Lin Xu, Rong Yin, Siwei Wang, Qin Zhang

Abstract

Oesophageal cancer (ESCA) is a clinically challenging disease with poor prognosis and health-related quality of life. Here, we investigated the transcriptome of ESCA to identify high risk-related signatures. A total of 159 ESCA patients of The Cancer Genome Atlas (TCGA) were sorted by three phases. In the discovery phase, differentially expressed transcripts were filtered; in the training phase, two adjusted Cox regressions and two machine leaning models were used to construct and estimate signatures; and in the validation phase, prognostic signatures were validated in the testing dataset and the independent external cohort. We constructed two signatures from three types of RNA markers by Akaike information criterion (AIC) and least absolute shrinkage and selection operator (LASSO) Cox regressions, respectively, and all candidate markers were further estimated by Random Forest (RFS) and Support Vector Machine (SVM) algorithms. Both signatures had good predictive performances in the independent external oesophageal squamous cell carcinoma (ESCC) cohort and performed better than common clinicopathological indicators in the TCGA dataset. Machine learning algorithms predicted prognosis with high specificities and measured the importance of markers to verify the risk weightings. Furthermore, the cell function and immunohistochemical (IHC) staining assays identified that the common risky marker FABP3 is a novel oncogene in ESCA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。