Development of simple, scalable protease production from Botrytis cinerea

开发简单、可扩展的灰葡萄孢蛋白酶生产方法

阅读:10
作者:Rachel A Self, Mark D Harrison, Valentino S Te'o Jr, Steve Van Sluyter

Abstract

Heat haze-forming proteins are stable during winemaking and are typically removed via adsorption to bentonite. Proteolytic degradation is an alternative method to prevent wine-haze and offers the opportunity to reduce the environmental impacts and labor cost of the process. Herein, we describe the development of a production system for Botrytis cinerea proteases for the enzymatic degradation of heat haze-forming proteins. The effect of culture medium on the secretion of glucan by B. cinerea was investigated and methods to inactivate B. cinerea laccase in liquid culture medium were assessed. Protease production by B. cinerea was scaled up from 50 mL in shake flasks to 1 L in bioreactors, resulting in an increase in protease yield from 0.30 to 3.04 g L-1. Glucan secretion by B. cinerea was minimal in culture medium containing lactose as a carbon source and either lactic or sulfuric acid for pH control. B. cinerea laccases were inactivated by reducing the pH of culture supernatant to 1.5 for 1 h. B. cinerea proteases were concentrated and partially purified using ammonium sulfate precipitation. SWATH-MS identified aspartic acid protease BcAP8 amongst the precipitated proteins. These results demonstrate a simple, affordable, and scalable process to produce proteases from B. cinerea as a replacement for bentonite in winemaking. KEY POINTS: • Isolates of B. cinerea that produce proteases with potential for reducing wine heat-haze forming proteins were identified. • Media and fermentation optimization increased protease yield tenfold and reduced glucan secretion. • Low pH treatment inactivated laccases but not proteases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。