Convergent evidence from alcohol-dependent humans and rats for a hyperdopaminergic state in protracted abstinence

来自酒精依赖人类和大鼠的共同证据表明长期戒酒会导致多巴胺能亢进状态

阅读:8
作者:Natalie Hirth, Marcus W Meinhardt, Hamid R Noori, Humberto Salgado, Oswaldo Torres-Ramirez, Stefanie Uhrig, Laura Broccoli, Valentina Vengeliene, Martin Roßmanith, Stéphanie Perreau-Lenz, Georg Köhr, Wolfgang H Sommer, Rainer Spanagel, Anita C Hansson

Abstract

A major hypothesis in addiction research is that alcohol induces neuroadaptations in the mesolimbic dopamine (DA) system and that these neuroadaptations represent a key neurochemical event in compulsive drug use and relapse. Whether these neuroadaptations lead to a hypo- or hyperdopaminergic state during abstinence is a long-standing, unresolved debate among addiction researchers. The answer is of critical importance for understanding the neurobiological mechanism of addictive behavior. Here we set out to study systematically the neuroadaptive changes in the DA system during the addiction cycle in alcohol-dependent patients and rats. In postmortem brain samples from human alcoholics we found a strong down-regulation of the D1 receptor- and DA transporter (DAT)-binding sites, but D2-like receptor binding was unaffected. To gain insight into the time course of these neuroadaptations, we compared the human data with that from alcohol-dependent rats at several time points during abstinence. We found a dynamic regulation of D1 and DAT during 3 wk of abstinence. After the third week the rat data mirrored our human data. This time point was characterized by elevated extracellular DA levels, lack of synaptic response to D1 stimulation, and augmented motor activity. Further functional evidence is given by a genetic rat model for hyperdopaminergia that resembles a phenocopy of alcohol-dependent rats during protracted abstinence. In summary, we provide a new dynamic model of abstinence-related changes in the striatal DA system; in this model a hyperdopaminergic state during protracted abstinence is associated with vulnerability for relapse.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。