Conclusion
Besides a detailed time-course of pathology in this OA model, we show evidence of contributions of the sympathetic nervous system and dorsal horn glia to pain mechanisms. In addition, late activating transcription factor 3 expression in the DRG that coincides with these changes provides evidence in support of a neuropathic component in OA pain.
Methods
We used a rat monoiodoacetate model of the ankle joint to study the time-course of the development of pain-related behavior and pathological changes in the joint, dorsal root ganglia (DRG), and spinal cord, and to investigate drug treatments effects.
Results
Mechanical hypersensitivity and loss of mobility (as assessed by treadmill) were detected from 4 weeks after monoiodoacetate. Cold allodynia was detected from 5 weeks. Using histology and x-ray microtomography, we confirmed significant cartilage and bone degeneration at 5 and 10 weeks. We detected increased nociceptive peptidergic and sympathetic fiber innervation in the subchondral bone and synovium at 5 and 10 weeks. Sympathetic blockade at 5 weeks reduced pain-related behavior. At 5 weeks, we observed, ipsilaterally only, DRG neurons expressing anti-activating transcription factor 3, a neuronal stress marker. In the spinal cord, there was microgliosis at 5 and 10 weeks, and astrocytosis at 10 weeks only. Inhibition of glia at 5 weeks with minocycline and fluorocitrate alleviated mechanical allodynia.
