Carbenoxolone decreases monocrotaline‑induced pulmonary inflammation and pulmonary arteriolar remodeling in rats by decreasing the expression of connexins in T lymphocytes

卡贝诺酮通过降低T淋巴细胞中连接蛋白的表达,减轻单克罗他林诱导的大鼠肺部炎症和肺小动脉重塑。

阅读:2
作者:Liang Ζ Zhang # ,Zhi-Ru Fan # ,Lu Wang # ,Lu-Qian Liu ,Xin-Zhi Li ,Li Li ,Jun-Qiang Si ,Ke-Tao Ma

Abstract

The adaptive immune response mediated by T lymphocytes is a well‑established factor in the pathogenesis of pulmonary inflammation. Changes in the expression of various connexins (Cxs) or disruption of connexin‑mediated cellular communication in T lymphocytes contribute to inflammation or tissue remodeling. The aim of the present study was to investigate the potential therapeutic value of blocking Cxs in a monocrotaline (MCT)‑induced pulmonary inflammation rat model. Carbenoxolone (CBX) was used to inhibit connexin‑mediated cellular communication. An MCT rat model was established by intraperitoneal (i.p.) injection of a single dose of MCT (60 mg/kg), and CBX treatment (20 µg/kg/day, i.p.) was initiated on the day following MCT treatment for 28 days. Vehicle‑treated male Sprague‑Dawley rats were used as the negative control. The MCT rat model was evaluated by measuring the pulmonary artery flow acceleration time and right ventricular hypertrophy index (RVHI). Histopathological features of the lung tissues and pulmonary arteriolar remodeling were assessed. The proportions of T lymphocyte subtypes, Cx40/cx43 expression in the T cell subtypes and the cytokine levels in the plasma and the lung tissues were also analyzed. Pharmacological inhibition of Cxs using CBX attenuated MCT‑induced right ventricular hypertrophy, pulmonary arteriolar remodeling, lung fibrosis and inflammatory cell infiltration by decreasing the RVHI, pulmonary arterial wall thickening, collagen deposition and pro‑inflammatory cytokines production as well as CD3+ and CD4+ T cell accumulation in lung tissues of MCT‑treated rats. Furthermore, flow cytometry analysis revealed that CBX may inhibit MCT‑induced Cx40 and Cx43 expression in CD4+ and CD8+ T lymphocytes in lung tissues. The present study provides evidence that pharmacological inhibition of Cxs may attenuate MCT‑induced pulmonary arteriolar remodeling and pulmonary inflammatory response, at least in part, by decreasing Cx expression. The results highlight the critical role of Cxs in T lymphocytes in the MCT‑induced pulmonary inflammatory response and that targeting of Cxs may be a potential therapeutic method for treating pulmonary inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。