Characterization and application of size-sorted zonal chondrocytes for articular cartilage regeneration

按大小分选的区域性软骨细胞的表征及其在关节软骨再生中的应用

阅读:6
作者:Lu Yin, Yingnan Wu, Zheng Yang, Vinitha Denslin, Xiafei Ren, Ching Ann Tee, Zhangxing Lai, Chwee Teck Lim, Jongyoon Han, Eng Hin Lee

Abstract

Current clinical approaches for articular cartilage repair have not been able to restore the tissue with zonal architecture, and its biomechanical and functional properties. Mimicking the zonal organization of articular cartilage in neo-tissue by implanting zonal chondrocyte subpopulations in multilayer construct could enhance the functionality of the graft, engineering of stratified tissue has not yet been realized due to lack of efficient and specific zonal chondrocyte isolation protocol. We show that by using a spiral microchannel device, the superficial, middle and deep zone chondrocytes can be separated based on cell size, and enriched from full thickness porcine cartilage in a high-throughput, label-free manner. The size-sorted cells show zone-specific characteristics in RT-PCR analysis of zonal cartilage markers. Both freshly sorted and two-passage expanded zonal chondrocytes formed cartilage tissue in 3D hydrogel, bearing respective zonal characteristics, indicated by RT-PCR, histology, extracellular matrix proteins, and mechanical compression test. In the proof-of-concept in vivo study using a rodent cartilage defect model, the size-sorted zonal chondrocytes when delivered in bi-layered hydrogel construct, facilitated better cartilage repair with mechanically enhanced cartilage tissue, in comparison to conventional chondrocytes implantation. This study provides an effective approach to obtain large numbers of zonal chondrocytes, and demonstrates the translational potential of stratified zonal chondrocyte implantation for clinical repair of critical size cartilage defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。